01.01.2024 Cash Award Math Rider - Author's Solution

To Prove: $\left(O E^{2}-O F^{2}\right)=2\left(N E^{2}-N F^{2}\right)$.

Construction:

Let P \& Q be the midpoints of OE \& OF respectively. Join PN, QN, BC, AC \& AD.

As $\mathrm{FN}=\mathrm{ND}, \mathrm{F}$ is the orthocentre of $\triangle A B C$.
As $\mathrm{EN}=\mathrm{NB}, \mathrm{E}$ is the orthocentre of $\triangle A D C$.
And O is the circumcentre.

As Centre of nine-point circle is the midpoint of the segment joining the orthocentre and the circumcentre of a triangle,

P is the centre of nine-point circle of $\triangle A D C \& \mathrm{Q}$ is the centre of nine-point circle of $\triangle A B C$.
As radius of nine-point circle is half of the radius of circumcircle and here circumcircle of two triangles $\triangle A B C \& \triangle A D C$ are same.
\Rightarrow Radius of two nine-point circle are equal. Also both nine-point circle passes through N (as N is the foot of the altitudes of both the triangles $\triangle A B C \& \triangle A D C$ and nine-point circle always passes through the foot of the altitudes)
$\Rightarrow \mathrm{PN}=\mathrm{QN}=$ radius of nine-point circle.
$\ln \triangle O N E, \mathrm{NP}$ is the median.
So, by Apollonius Theorem,
$O N^{2}+N E^{2}=2\left(\frac{O E^{2}}{4}+P N^{2}\right)$
In $\triangle O N F, \mathrm{NQ}$ is the median.
So, by Apollonius theorem.
$O N^{2}+N F^{2}=2\left(\frac{O F^{2}}{4}+N Q^{2}\right)$
(1) - (2)
$N E^{2}-N F^{2}=\frac{O E^{2}}{2}-\frac{O F^{2}}{2} \quad(\because P N=N Q)$
$\Rightarrow 2\left(N E^{2}-N F^{2}\right)=O E^{2}-O F^{2}$

